MATH 112, DERIVATIVES AND INTEGRALS

How to take Derivatives in Math 112
How to Integrate in Math 112

Step 0: Expand, simplify, rewrite powers.
Step 1: Identify PRODUCT, QUOTIENT or CHAIN

$$
\begin{aligned}
& (F(x) S(x))^{\prime}=F(x) S^{\prime}(x)+F^{\prime}(x) S(x) \\
& \left(\frac{N(x)}{D(x)}\right)^{\prime}=\frac{D(x) N^{\prime}(x)-N(x) D^{\prime}(x)}{(D(x))^{2}} \\
& (f(g(x)))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)
\end{aligned}
$$

we have three versions of the chain rule

$$
\begin{aligned}
& \left((g(x))^{n}\right)^{\prime}=n(g(x))^{n-1} \cdot g^{\prime}(x) \\
& \left(e^{g(x)}\right)^{\prime}=e^{g(x)} \cdot g^{\prime}(x) \\
& (\ln (g(x)))^{\prime}=\frac{1}{g(x)} \cdot g^{\prime}(x)
\end{aligned}
$$

Step 2: Go back to step 1 to get any subsequent derivatives you need until you are done.

Step 0: Expand, simplify, rewrite powers.
Step 1: Identify the following:

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}+C \quad(n \neq-1) \\
& \int(x+a)^{n} d x=\frac{1}{n+1}(x+a)^{n+1}+C(n \neq-1) \\
& \int \frac{1}{x} d x=\ln (x)+C \\
& \int e^{a x} d x=\frac{1}{a} \mathrm{e}^{a x}+C \\
& \int k d x=k x+C
\end{aligned}
$$

Step 2: Check by differentiating. Done!!

